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Abstract—Covariance matching techniques have recently
grown in interest due to their good performances for object
retrieval, detection and tracking. By mixing color and texture
information in a compact representation, it can be applied
to various kinds of objects (textured or not, rigid or not).
Unfortunately, the original version requires heavy computations,
and is difficult to execute in real-time on embedded systems. This
article presents a review on different versions of the algorithm
and its various applications. Then, a comprehensive study is made
to reach higher level of performance on multi-core CPU architec-
tures, by comparing different ways to structure the information,
using SIMD instructions and advanced loop transformations. The
execution time is reduced significantly on two dual-core CPU
architectures for embedded computing: PandaBoard with ARM
Cortex-A9 and an Intel Ultra Low voltage U9300. According
to our experiments on Covariance Tracking (CT), it is possible
to reach a speedup of ×2.2 on ARM Cortex-A9 and ×2.8 on
Intel U9300, when compared to the original algorithm, leading
to real-time execution.

I. INTRODUCTION

Tracking consists in estimating the evolution in state (e.g.,
location, size, orientation) of a moving target over time.
This process is often subdivided into two other subproblems:
detection and matching. Detection deals with the difficulties
of generic object recognition i.e., finding instances from a
particular object class or semantic category (e.g., humans,
faces, vehicles) registered in digital images and videos. On
the other hand, matching methods provide the location which
maximizes the similarity with the objects previously detected
in the sequence. Generic object recognition requires mod-
els that cope with the diversity of instances appearances
and shapes. This is generally made by learning techniques
and classification. Conversely, matching algorithms analyze
particular information and construct discriminative models
that allow to disambiguate different instances from the same
category and avoid confusions.

The main difficulty of tracking is to trace target trajecto-
ries and adapt to changes of appearance, pose, orientation,
scale and shape. Since the beginnings of computer vision
a diversity of tracking methods have been proposed, some
of them construct path and state evolution estimations using
a Bayesian framework (e.g., particle filters, hidden Markov
models), others measure the perceived optical flow in order

to determine object displacements and scale changes (median
flow) [7]. Exhaustive appearance-based methods compare a
dense set of overlapping candidate locations to detect the one
that fits best with some kind of template or model. When a
priori information about the target location and its dynamics
(e.g., speed and acceleration) is available, the number of
comparisons can be reduced enormously by giving preference
to the more likely target regions. Other accelerations can
be achieved using local searches that are based on gradient-
descent algorithms able to handle small target displacements
and geometrical changes. Among these approaches, feature
points tracking techniques are very popular [9] since points can
be extracted in most scenes, contrary to lines or other geomet-
ric features. Because they represent very local patterns, their
motion models can be assumed as rigid and be estimated in
a very efficient way. This method, as well as block matching,
are raw-pixel methods, since the target is directly represented
by its pixels matrix.

In order to deal with non-rigid motion, kernel-based meth-
ods such as Mean-Shift (MS) [2] [4] use a representation based
on color or texture distribution.

Covariance tracking (CT) [13] is a very interesting and
elegant alternative which offers a compact target representation
based on the spatial correlation of different features computed
at each pixel in the target bounding box. Very satisfying
tracking performances have been observed for diverse kinds of
objects (e.g. with rigid motion or not, with texture or not) . CT
has been studied extensively, and many feature configurations
and arrays of covariance descriptors have been proposed to
improve target discrimination [8], [21] , [5], [11], [1] and
[14]. Smoother trajectories can be obtained by considering
target dynamics, therefore they increase tracking accuracy and
reduce the search space [17], [18]. Genetic algorithms [20]
can also be used to accelerate the convergence towards the
optimal solution of the best candidate position, considering a
search in a large image. But, to our knowledge, little work
has been done to analyze the computational demands of CT
and its portability to embedded systems. The goal of this
article is to fill this gap, analyze the algorithm’s computational
behavior for different implementations and measure their load
on embedded architectures.



The article is structured as follows: the covariance tracking
CT is explained in Section II, details about the CT opti-
mizations proposed to achieve a higher level of performance
by accelerating the kernel of the algorithm are discussed
in Section III. Experiments and details about the algorithm
implementation are presented in Section IV and finally our
conclusions are given in Section V.

II. COVARIANCE MATRICES AS IMAGE REGION
DESCRIPTORS

Let I represent a luminance (grayscale) or a color image
with three channels and consider a rectangular region of size
W ×H (it can be the bounding box of the target to be tracked
for example). Let F be the W ×H × d dimensional feature
image extracted from I

Fuv = F (puv) = φ(I,puv) with puv = (xu, yv) (1)

where φ is any d-dimensional mapping forming a feature
vector for each pixel of the bounding box. The features can be
spatial coordinates puv , intensity, color (in any color space),
gradients, filter responses, or any possible set of images ob-
tained from I . Now, let {zk}k=1···n be a set of d-dimensional
feature vectors inside the rectangular region R ⊂ F of n
pixels. Concerning notations, puv stands for the pixel at uth

raw and vth column.
The region R is represented with the d×d covariance matrix

CR =
1

n− 1

n∑
k=1

(zk − µ)(zk − µ)T (2)

where µ is the mean feature vector computed on the n points.
The covariance matrix is a d × d matrix which fuses

multiple features naturally by measuring their correlations. The
diagonal terms represent the variance of each feature, while
elements outside this diagonal are the correlations. Thanks to
the averaging in the covariance computation, noisy pixels are
largely filtered out, which is an interesting advantage when
compared to raw-pixel methods. Covariance matrices are more
compact than most classical object descriptors. Indeed, due to
symmetry, CR has only (d2 + d)/2 different values whatever
the size of the target. To some extent, it is robust against scale
changes, because all values are normalized by the size of the
object, and against rotation when the locations coordinates
pu,v are replaced by the distance to the center of the bounding
box.

The covariance descriptor ceases to be rotationally invariant
when orientation information is introduced in the feature
vector such as the norm of gradients with respect to x and
y directions. The information considered by the covariance
descriptor should be adapted to problem at hand, because they
depend on the application, as described in next paragraph.

A. Covariance descriptor feature spaces

Covariance descriptors have been used in computer vision
for object detection [16], re-identification [1], [14] and track-
ing [13]. The recommended set of features to use depends
significantly on the application and the nature of the object:

tracking faces is different than tracking pedestrians because
faces are somehow more rigid than pedestrians that have more
articulations. Color is an important hint for pedestrian or
vehicle tracking/re-identification because of their clothes or
bodywork color. But color is less significant to re-identify or
track faces because the set of colors they exhibit is relatively
limited.

Table I displays a summary of the more common feature
combinations used by covariance descriptors in computer
vision. The most obvious ones are the components from
different color spaces such as RGB and HSV. Pixel brightness
in the gray-scale image I and its local directional gradients as
absolute values |Ix| and |Iy|, gradient magnitude

√
I2
x + I2

y

and its angle calculated as arctan |Ix|
|Iy| . Foreground images

G resulting from background subtraction methods and its
gradients Gx and Gy . Features g00(x, y) to g74(x, y) represent
the 2-D Gabor kernel as a product of an elliptical Gaussian
and a complex plane wave [11].

Some texture analysis and tracking methods use local binary
patterns (LBP) in the place of Gabor filters because it is more
simple and economical. Values VarLBP , LBPθ0 and LBPθ1
in Table I represent local binary pattern variance (which is a
classical property of the LBP operator [12]) and the angles
defined by them, as detailed in [15] respectively. This version
of the feature vector has shown very good performances for
tracking, both in terms of robustness and computation times,
and requires a shorter vector when compared to Gabor filters.
In the rest of the paper, for the algorithmic optimization, a
vector of seven features is considered.

Now, let us detail the computation of the covariance de-
scriptor.

B. Covariance descriptor computation

From (2), the (i, j)-th element of the covariance matrix is

CR(i, j) =
1

n− 1

n∑
k=1

(zk(i)− µ(i))(zk(j)− µ(j)). (3)

Expanding the means and rearranging the terms we have

CR(i, j) =
1

n− 1

[
n∑
k=1

zk(i)zk(j)−
1
n

n∑
k=1

zk(i)
n∑
k=1

zk(j)

]
.

(4)
The covariance in a given region depends on the sum of

each feature dimension z(i)i=1···n, as well as the sum of
the multiplications of any pair of features z(i)z(j)i,j=1···n,
requiring in total d+ d2 integral images, one for each feature
dimension z(i) and one for the multiplication of any pair of
feature dimensions z(i)z(j).

Let A be a W ×H×d tensor of the integral images of each
feature dimension

Auv(i) =
∑

p∈R(11,uv)

Fuv(i) for i = i · · · d, (5)

where R(11, uv) is the region bounded by the top-left image
corner p11 = (1, 1) and any other point in the image puv =



Application Feature set φ(I,p) with p = (x, y)

Face tracking and recognition [11]

ˆ
x y |Ix| |Iy | |Ixx| |Iyy |

˜
ˆ
x y I |Ix| |Iy | |Ixx| |Iyy | θ(x, y)

˜
ˆ
x y I g00(x, y) g01(x, y) · · · g74(x, y)

˜
Pedestrian detection [16], [19]

h
x y |Ix| |Iy |

q
I2x + I2y |Ixx| |Iyy | arctan

|Ix|
|Iy|

i
h
x y |Ix| |Iy |

q
I2x + I2y arctan

|Ix|
|Iy| G

q
G2
x + G2

y

i

Pedestrian tracking [1], [13], [14], [16] and [15]

ˆ
x y R G B |Ix| |Iy |

˜
ˆ
x y R G B |Ix| |Iy | |Ixx| |Iyy |

˜
ˆ
x y H S V |Ix| |Iy |

˜
ˆ
x y R G B VarLBP

˜
ˆ
x y I sin(LBPθ0 ) cos(LBPθ0 ) sin(LBPθ1 ) cos(LBPθ1 )

˜
TABLE I

FEATURES CONSIDERED BY THE COVARIANCE DESCRIPTOR DEPENDING ON THE APPLICATION.

(xu, yv). In a general way, let R(uv, u′v′) be the rectangular
region defined by the top-left point puv and the right-bottom
point pu′v′ .

Similarly, the tensor containing the feature product-pair
integral images is denoted as

Buv(i, j) =
∑

p∈R(11,uv)

Fuv(i)Fuv(j) for i, j = i · · · d. (6)

Now, for any point puv , let Auv be a d dimensional vector
and B a d× d dimensional matrix such as

Auv = [Auv(1) · · ·Auv(d)]T

Buv =

 Buv(1, 1) · · · Buv(1, d)
...

Buv(d, 1) · · · Buv(d, d)

, (7)

The covariance of the region bounded by (1, 1) and puv is

CR(11, uv) =
1

n− 1

[
Buv −

1
n

AuvATuv

]
, (8)

where n is the number of pixels in the R under investigation.
Similarly and after some algebraic manipulations, the covari-
ance of the region R(uv, u′v′) is

CR(uv,u′v′) = 1
n−1

[
(Bu′v′ + Buv − Bu′v − Buv′)

− 1
n (Au′v′ + Auv − Auv′ − Au′v) ·

(Au′v′ + Auv − Auv′ − Au′v)
T
]
,

(9)

After constructing the integral images the covariance of any
rectangular region can be computed in O(d2) time regardless
of the size of the region R(uv, u′v′). The complete process is
represented graphically in Figure 1.

Next paragraph explains the covariance matching process.

Fig. 1. Covariance descriptor computation: the image is first decomposed
into an array of feature images (feature image tensor) applying the feature map
Fuv = φ(I,puv). Then the crossed-products of these features are computed,
using these arrays, the tensor integral images Au′v′ (i) and the second order
integral images tensor Bu′v′ (i, j) are computed.

C. Covariance matching and tracking

Covariance models and instances can be compared and
matched using a simple nearest neighbor approach i.e. by
finding the covariance descriptors that best resembles a model.
The problem is that covariance matrices (SPD matrices in
general) do not lie on the Euclidean space and many common
and widely known operations in Euclidean spaces are not ap-
plicable or require to be adapted (e.g., a SPD matrix multiplied



by a negative scalar is no longer a valid SPD matrix). A
n× n SPD matrix only has n× (n+ 1)/2 different elements,
while it is possible to vectorize them and perform element-by-
element subtraction, this approach provides very poor results
as it fails to analyze the correlations between variables and the
patterns stored in them. A solution to this problem is proposed
in [3] where a dissimilarity measure between two covariance
matrices is given as

ρ(C1,C2) =

√√√√ n∑
i=1

ln2 λi(C1,C2) (10)

where {λi(C1,C2)}i=1,··· ,n are the generalized eigenvalues of
C1 and C2 computed from

λiC1xi − C2xi = 0 i = 1, · · · , d. (11)

In (11), xi 6= 0 are the generalized eigenvectors. Distance
measure (10) satisfies the metric axioms for SPD matrices C1

and C2

1. ρ(C1,C2) ≥ 0 and ρ(C1,C2) = 0 only if C1 = C2,
2. ρ(C1,C2) = ρ(C2,C1)
3. ρ(C1,C2) + ρ(C1,C3) ≥ ρ(C2,C3).

(12)
The tracking starts in the first frame of the sequence, by

computing the covariance matrix C1 in the bounding box
of the target under consideration. The initial detection is not
detailed in this paper, since it can be made in various ways,
by object recognition or background subtraction for example.
Then, the tracking consists in finding the new location of
the target in the successive frames, by finding the covariance
matrix C2 minimizing the dissimilarity (10).

In the remainder of the paper, the search in made exhaus-
tively in a large area around the previous location of the object.
There are two main reasons for that. First, the computation
times are more predictable than the steepest descent method,
and the results of next section concerning execution times will
correspond to the worst case. Second, the exhaustive search
allows the matching of a target undergoing brutal motion, or
can retrieve the target after occlusion.

III. COVARIANCE TRACKING ALGORITHM ANALYSIS AND
OPTIMIZATIONS

A REFAIRE Three strategies are studied to optimize the
covariance tracking CT on multi-core CPUs. The first one is
based on SoA→AoS transformation. The second one consists
in architectural optimizations: either multi-threading the SoA
version with OpenMP middleware or using SIMD instructions
(SSE for Intel, Neon on ARM) for the AoS version. The third
one is the Loop-Fusion transform.

A. SoA→AoS

The goal of SoA→AoS transform (Structure of Arrays to Ar-
ray of Structures) consists in transforming a set of independent
arrays into one array, where each cell is a structure combining
the elements of each independent array. The contribution of
such a transform is to leverage the cache performance by

enforcing spatial and temporal cache locality. Let us define
the following notations:

• h and w the height and width of the image
• nF the number of features,
• nP , the number of products of features, that is nP =
nF (nF + 1)/2,

• F a cube (SoA) or matrix (AoS) of features,
• P a cube (SoA) or matrix (AoS) of feature products,
• IF and IP two cubes (or matrices) of integral images

(from F or P ),

Here we want to optimize the locality of the features (or
the product of features) of a given point of coordinates (i, j).
In SoA version, we have two cubes FSoA of size nF × h×w
and PSoA of size nP × h× w. In AoS we have two matrices
FAoS and PAoS of size h× (w · nF ) and h× (w · nP ).

In our case, the SoA→AoS transform consists in swapping
the loop nests and changing the addressing computations from
a 3D-form like cube[k][i][j] into a 2D-form like matrix[i][j×
n+ k], where n is the structure cardinal (here nF or nP ).

The covariance tracking algorithm is composed of three
stages:

1) point-to-point products computation of all features,
2) the integral image computation of features,
3) the integral image computation of products.

The product of features and its transformation are described
in algorithms 1 and 2. Thanks to commutativity of the multi-
plication, only half of the products have to be computed (the
loop on k2 starts at k1, line 3). As the two last stages are
similar, we only present a generic version of integral image
computation (Algo. 3) and its transformation (Algo. 4).

Algorithm 1: product of features - SoA version
k ← 01
foreach k1 ∈ [0..nF − 1] do2

foreach k2 ∈ [k1..nF − 1] do3
foreach i ∈ [0..h− 1] do4

foreach j ∈ [0..w − 1] do5
P [k][i][j]← F [k1][i][j]× F [k2][i][j]6
k ← k + 17

Algorithm 2: product of features - AoS version
foreach i ∈ [0..h− 1] do1

foreach j ∈ [0..w − 1] do2
k ← 03
foreach k1 ∈ [0..nF − 1] do4

foreach k2 ∈ [k1..nF − 1] do5
P [i][j × nP + k]←6
F [i][j × nP + k]× F [i][j × nP + k]
k ← k + 17



Algorithm 3: integral image - SoA version, n ∈ {nF , nP }
foreach k ∈ [0..n− 1] do1

foreach i ∈ [0..h− 1] do2
foreach j ∈ [0..w − 1] do3

I[k][i][j]← I[k][i][j] + I[k][i][j − 1] + I[k][i−4
1][j]− I[k][i− 1][j − 1]

Algorithm 4: integral image - AoS version, n ∈ {nF , nP }
foreach i ∈ [0..h− 1] do1

foreach j ∈ [0..w − 1] do2
foreach k ∈ [0..n− 1] do3

I[i][j×n+k]← I[i][j×n+k]+I[i][(j−1)×n+4
k]+I[i−1][j×n+k]−I[k][i−1][(j−1)×n+k]

B. SIMD and OpenMP

Once this transform is done, one can also apply SIMD to the
different parts of the algorithm. For the product part, the two
internal loops on k1 and k2 are fully unrolled in order to show
the list of all multiplications and the list of vectors to construct
through permutation instructions (e.g., _mm_shuffle_ps in
SSE). For example, for a typical value of nF = 7, there are
nP = 28 products. The associated vectors are (the numbers
are the feature indexes):

[P0, P1, P2, P3] = [F0, F0, F0, F0]× [F0, F1, F2, F3]

[P4, P5, P6, P7] = [F0, F0, F0, F1]× [F4, F5, F6, F1]

[P8, P9, P10, P11] = [F1, F1, F1, F1]× [F2, F3, F4, F5]

[P12, P13, P14, P15] = [F1, F2, F2, F2]× [F6, F2, F3, F4]

[P16, P17, P18, P19] = [F2, F2, F3, F3]× [F5, F6, F3, F4]

[P20, P21, P22, P23] = [F3, F3, F4, F4]× [F5, F6, F4, F5]

[P24, P25, P26, P27] = [F4, F5, F5, F6]× [F6, F5, F6, F6]

In that case, the 7th vector is 100% filled, but it will become
sub-optimal if nP is not divisible by the cardinal of the SIMD
register (4 with SSE and Neon). In SSE, some permutations
can be achieved using only one instruction, the other need
a maximum of two instructions. Because some permutations
can be re-used to perform other permutations, it is possible
to achieve a factorization over all the required permutations.
For example with nF = 7, fifteen shuffles are required. In
Neon it is more complex. If some permutations can be done
into 128-bits registers – that is with a parallelism of 4 – other
permutations require instructions only available with 64-bit
registers, like the look-up table instruction named vtbl. So
in Neon, 128-bit float registers should be: 1) split into 64-
bit registers, 2) type-casted into 64-bit integer registers, 3)
permuted with vtbl instructions 4) type-casted into 64-bit
float registers and 5) combined into 128-bit float registers.
Finally it requires 48 SIMD Neon instructions to create the
seven pairs of products.

The table II provides the algorithmic complexity and the
amount of memory accesses for both scalar and SIMD (SSE
and Neon) versions. It also provides the arithmetic intensity
(AI) – popularized by Nvidia – that is the ratio between the
number of operations (including the number of permutations
for SIMD version) and the number of memory accesses.

Note that the scalar version has a low AI of 0.5 as the
number of memory accesses is twice the number of operations.
It can also be noticed that the SIMD version has ×2.7 less
operations for SSE (respectively 1.6 for Neon) and ×4.8 less
memory accesses, thus the AI ratios reache 0.9 for SSE and
1.5 for Neon.

Concerning OpenMP, the point is to evaluate SOA+OpenMP
versus AoS+SIMD. Indeed, because for a common 4-core
General Purpose Processor (GPP) the degree of parallelism
with a multi-threaded version and with a SIMDized version is
the same, i.e. four. Results are provided in cycles per point
(cpp) versus the data amount (image size). The cpp is a
normalized metric that help to detect cache overflow (when
data do not fit in the cache): the curve of cpp increases
significantly.

The three versions (SoA+OpenMP, AoS, AoS+SIMD) have
been benchmarked on three generations of Intel processors:
Penryn, Nehalem and SandyBridge for image size varying
from 128× 128 up to 1024× 1024. It appears (Fig. 2) that a
4-threaded version is always slower than a 1-threaded SIMD
version. Eight threads are required on the Nehalem to be
faster. The reason is the low AI inducing a high stress on
the architecture’s buses and also because manipulating SOA
requires nP = 28 active references in the cache, that is
more than the usual L2 or L3 associativity (24 on the Intel
processor). In the next steps of this article, SIMDization is the
only architectural optimization being considered as realistic.

C. Loop fusion

We have tested three versions with loop-fusion in order
to increase the AI ratio by reducing the amount of memory
accesses. The first one is a scalar parametric version (with
nF ) that fuses the external i-loop and keeps the three j-
loops unchanged. The second one is a specialized version with
nF = 7 where the three internal loops are fused together.
The third one is the SIMDized version of the second one.
The internal loop fusion allows to save the LOAD/STORE
instructions in order to write a product of features into memory
and to read it afterwards to compute the integral image of
products. The Loop-Fusion has been done by hand, but some
tools like PIPS [10] can do such kind of transformation
automatically [6]. The complexity of scalar and SIMD versions
are provided in table III

D. Embedded systems

Let us now focus on more embedded processors like the
Intel ULV (Ultra Low Voltage) Penryn U9300 – that belongs
to the Penryn family – and the ARM Cortex-A9. Their average
power consumption (TDP) are respectively about 10 W and 1
W while running at close frequencies: 1.2 GHz and 1.0 Ghz.



instructions MUL ADD LOAD STORE AI
AoS scalar version with 3 loops

product of features nP 0 2nP nP -
integral of features 0 3nF 4nF nF -
integral of products 0 3nP 4nP nP -

total nP 3(nP + nF ) 6nP + 4nF 2nP + nF -
total with nP = nF (nF + 1)/2 2n2

F + 5nF 4n2
F + 9nF -

total with nF = 7 133 259 0.5
AoS SIMD (with nF = 7) version with 3 loops

product of features 7 0 2 7 -
integral of features 0 21 28 7 -
integral of products 0 6 2 2 -

total SSE (+ 15 PERM) 49 54 0.9
total Neon (+ 48 PERM) 82 54 1.5

TABLE II
COMPLEXITY AND ARITHMETIC INTENSITY OF SCALAR AND SIMD VERSIONS WITHOUT LOOP-FUSION

instructions MUL ADD LOAD STORE AI
AoS scalar version + Loop Fusion

integral of features 0 2nF 2nF nF -
integral product of features nP 2nP nP nP -

total nP 2(nP + nF ) nP + 2nF nP + nF -
total with nP = nF (nF + 1)/2 1.5n2

F + 3.5nF n2
F + 4nF -

total with nF = 7 98 77 1.3
AoS SIMD (with nF = 7) version + Loop Fusion

integral of features 0 4 4 2 -
integral product of features 7 14 7 7 -

total SSE (+ 15 PERM) 40 20 2.0
total Neon (+ 48 PERM) 73 20 3.7

TABLE III
COMPLEXITY AND ARITHMETIC INTENSITY OF SCALAR AND SIMD VERSIONS WITH LOOP-FUSION

The figure 3 provides the cpp for SoA, AoS, AoS+SIMD and
also AoS+T and AoS+T+SIMD for the Intel U9300 and ARM
Cortex-A9 (where T stands for Loop-Fusion Transform).

First, for both processors, the SoA version is very inef-
ficient, compared to the best one (AoS+T+SIMD). Secondly,
there are two big differences between them. The first one is im-
pact of the optimizations. For the Cortex-A9, for images larger
than 100 × 100, the only efficient optimization is the Loop-
Fusion transform. The impact of Neon instructions is minor:
AoS+SIMD is similar to AoS version, and AoS+T+SIMD is
similar to AoS+T. It comes from the memory hierarchy of the
Cortex and the number of extra instructions used to perform
the permutations (48 for Neon versus only 15 for SSE). The
second difference is cpp values: the Intel cpp’s are around
×4.5 smaller than ARM ones, that comes from higher latency
instructions.

If we now focus on the impact of Loop-Fusion (Tab. IV),
we can see that the speedup with AoS version is about ×2 for
Intel and ×3.3 for ARM, while the total speedups are ×5.3
and ×3.4. This optimization (combined with nF specialization
for loop-unwinding) is mandatory for this algorithm.

Concerning power efficiency, there is a factor 4 of speed
between the Intel U9300 and the Cortex-A9. However, as the
power consumption (TDP) of the Cortex is approximatively 10

Intel U9300 ARM Cortex-A9
AoS / AoS+T ×1.8 ×3.3

AoS+SIMD / AoS+T+SIMD ×2.2 ×3.2
SoA / AoS+T+SIMD ×5.3 ×3.4

TABLE IV
IMPACT OF LOOP-FUSION TRANSFORM: SPEEDUPS FOR U9300 AND

CORTEX-A9

times slower than the U9300, the Cortex-A9 is twice power
efficient than the U9300.

IV. ALGORITHM IMPLEMENTATION

Two sequences have been evaluated: Panda and Pedxing for
which the robustness of the algorithm have been evaluated in
[14] and [15]. for both of them, the execution times are given
in cpp for each version of the algorithm: SoA is the basic
version, and AoS++ stands for AoS transform + SIMDization
+ Loop-Fusion transform.

Two counter-intuitive results can be noticed. The first one is
the features computation cpp: it is lower for SoA. The reason
is obviously the memory layout of SoA (versus AoS) when
computing the features and storing them into a cube or a
matrix. The second counter-intuitive result is more interesting:
it is the tracking part of the algorithm. The tracking is based
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Fig. 2. Performance in cpp of a 1×4-core Penryn (top), 2×4-core Nehalem
(middle), 1× 4-core SandyBridge (bottom) for image sizes ∈ [128..1024].

on the computation of a similarity criterion that requires the
computation of the generalized eigenvalues, inversions and
matrix logarithms (10). In order to have the same behavior
we use Gnu Scientific Library to perform these computations
on both plateforms, but we can also use Intel MKL or Eigen
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Fig. 3. Performance in cpp of an Intel ULV U9300 and an ARM Cortex-A9
for image sizes ∈ [32..512]

sequence Panda Pedxing
size 312× 233 640× 480

algorithm version SoA AoS++ SoA AoS++
features computation (cpp) 128 150 128 150
kernel computation (cpp) 599 87 618 91

tracking (cpp) 23 23 11 11
total (cpp) 738 248 769 264

kernel / total 81 % 35 % 80 % 34 %
total speedup ×2.9 ×2.8

1-C execution time (ms) 45 15 197 68
2-C execution time (ms) 36 9 158 38

TABLE V
cpp AND EXECUTION TIME FOR INTEL U9300 ON 1 CORE AND 2 CORES

libraries. The future position is chosen by evaluating forty
(in our case, but it is parameterizable) random positions in
a research window, so matrix operations represent a high
percentage of the tracking part. It appears that the features used
for tracking lead to a “more” ill-conditioned matrix requiring
more computations for Panda than for Pedxing sequence.

Concerning the acceleration, we can see (tables V and VI)



sequence Panda Pedxing
size 312× 233 640× 480

algorithm version SoA AoS++ SoA AoS++
features computation (cpp) 461 461 486 486
kernel computation (cpp) 1491 395 1600 415

tracking (cpp) 96 96 19 19
total (cpp) 2048 952 2106 921

kernel / total 73 % 42 % 73 % 45 %
total speedup ×2.2 ×2.2

1-C execution time (ms) 149 69 647 283
2-C execution time (ms) 108 36 492 149

TABLE VI
cpp AND EXECUTION TIME FOR ARM CORTEX-A9 ON 1 CORE AND 2

CORES

that the optimization of the kernel provides a speedup of
×2.9 for Intel and ×2.2 for ARM that assets the need of
all optimizations. As both processors have two cores, all the
processing parts can be done either on one core (the execution
time is the sum of all parts) or on two cores (the biggest part
is on one core and the two other parts are on the second core).
With such a coarse grain thread distribution, the Intel U9300
can track targets in real-time for 640× 480 images, while the
ARM Cortex-A9 can do it for image sizes up to 320×240. As
said previously, there is a factor 10 for power consumption,
and only a factor 4 in execution time. So for small images
(up to 320 × 240) the Cortex-A9 is the best choice as it is
real-time and more power efficient than the Intel. While for
bigger sizes (up to 640× 480), the Intel is the only choice for
real-time implementation

V. CONCLUSION

We have presented the implementation of a robust covari-
ance tracking algorithm, with a parameterizable complexity
that can be adapted (number and nature of features) for trade-
off between robustness and execution time. Classical software
and hardware optimizations have been applied: SIMDiza-
tion and Loop-Fusion transform combined with AoS-SoA
transform to accelerate the kernel of the algorithm. These
optimizations allow a real-time execution on heavy embedded
systems like Intel U9300 and on light ones like the ARM
Cortex-A9.

In the future we will also accelerate the features computa-
tion part of the algorithm and create a multi-threaded version
of the algorithm in order to perform multi-target tracking.
From a benchmarking point of view, we will evaluate Cortex-
A15 and more power-efficient Intel processor. We will also
focus on the choice of features and ill-conditioned matrix
versus execution time. As far as we know, our implementation
of the covariance tracking algorithm is the first real-time
implementation for embedded systems, while being robust.
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